
Evaluation of the curvature of a superellipse with “radius” 1 at the point (1,0)

Given any point (x,y) on the curve with x<1:
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where R is the curvature radius approximation.

Considering a superellipse with “radius” 1:
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Taking the limit as x goes to 1:

lim
x→1
R(x)=1−

2 x−(2 /n)(1−xn)((2/n)−1)
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And applying l’Hôpital rule:

lim
x→1
R(x)=1−lim

x→1
x−(1−xn)((2 /n)−1)

For n=2, as the exponent (2/n)-1 is zero for all x, then:

lim
x→1

R(x)=1 

For n>2, as the exponent (2/n)-1 is less than zero for all x, then:

lim
x→1

R(x)=∞


